
Multi-Robot Coordination Induced in Hazardous Environments through an
Adversarial Graph-Traversal Game

James Berneburg, Xuan Wang, Xuesu Xiao, and Daigo Shishika

Abstract— This paper presents a game theoretic formulation
of a graph traversal problem, with applications to robots mov-
ing in hazardous environments, particularly in the presence of
an adversary. The blue team of robots moves in an environment
modeled by a time-varying graph, attempting to reach some
goal with minimum cost, while the red team controls how
the graph changes in time to maximize the cost. The problem
is formulated as a stochastic game, so that Nash equilibrium
strategies can be computed numerically. Bounds are provided
for the game value, with a guarantee that it solves the original
problem. Numerical simulations demonstrate the results and the
effectiveness of this method, particularly showing the benefit
of mixing actions for both players. Additionally, we observe
beneficial coordinated behavior in cases with multiple blue
agents, where they split up and/or synchronize to traverse risky
edges, so that at least a subset of the team takes the cheaper
path.

I. INTRODUCTION

Consider a scenario where multiple robots must traverse
difficult terrain to reach a goal, as shown in Figure 1. The
robots wish to reach the goal with minimum risk, and so must
plan a path through the environment. Such environments are
modeled as graphs which indicate the different paths robots
may take to reach the goal, and the difficulty of the terrain
may be captured by the weights of the graph. For constant
graphs, there exist algorithms for finding the shortest path,
which corresponds to minimizing risk. However, in cases
where the environment may change with time, we must
consider finding shortest path through time-varying graphs.
As this is a one-sided optimization, there exist many works
which solve this problem. For example, [1] proposes an
algorithm for finding the shortest time path through graphs
with time-varying delays on edges. Other works, like [2]
and [3], consider both time-varying costs and delays on
edges, and minimize one under a constraint on the other.
One work which specifically considers planning for a team
of robots on a graph is [4], which considers that the edge
costs are a function of the positions of other robots which
can provide support, and formulates an optimization problem
to minimize the cost to reach a goal.

However, such solutions may be unsuitable when the
environment may change in highly unpredictable ways be-
cause they rely on knowledge of how the graph changes in
time. One method to handle such uncertainty is to consider
an adversarial scenario, which can model the worst-case
scenario in an environment which changes due to natural

The authors are with the Department of Mechanical Engi-
neering, George Mason University, Fairfax, VA 22030, USA,
{jbernebu,xwang64,xiao,dshishik}@gmu.edu

75

3 6

41

2

Fig. 1. An example scenario motivating our problem. The team of robots
intend to reach their destination node 7 with minimal risk, but the terrain is
uncertain and time-varying, with the potential for the bridge to be destroyed
or trees to be downed on the road. Formulating this as a game can capture
the worst case scenario.

causes, or the case where the environment changes due to an
actual adversary. To analyze such scenarios, we turn to game
theory for results, where are many works which analyze
adversarial interactions on graphs.

A similar problem which uses graphs and frequently em-
ploys a game theoretic approach is attack graph problems [5],
[6]. These are used to model cyber-security problems where
the graph represents the possible avenues of attack, which
the defenders have some control over. For example, [5]
considers that the defender can add “honeypots” to the
network, modifying the graph nodes to be better defended
in a Stackelberg game formulation. Closer to our prob-
lem, [6] considers that both players incorporate feedback
into heuristic strategies to approximate the Nash equilibria.
However, this sort of formulation does not suit our problem,
because rather than the attacker moving from one node to
another in the graph, the attacker gains permanent control
over the resources represented by nodes. Another work
which also considers a network security problem over graphs
is [7], which considers an intrusion detection problem where
an attacker can compromise nodes and formulates it as a
stochastic game [8].

One particular type of game that is more closely related
to our problem is barrier coverage, which considers how
a defender may place sensors to detect intruding robots,
which move through the environment in an attempt to avoid
detection [9], [10]. Here, rather than the cost for the moving
robots indicating the hazard level of the environment, it
indicates the probability of detection. While these two works
analyze this problem from a game theoretic perspective
and provide Nash equilibrium results, they are not directly
applicable to our problem, because they cannot consider real-
time feedback in the defender’s sensor placement.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2149 submitted to 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Received March 17, 2024.

Therefore, this paper’s contributions are as follows. We
formulate the adversarial graph traversal problem as a novel
stochastic game, which allows for numerical computation of
a mixed Nash equilibrium. We provide theoretical results by
bounding the game value with security strategies for both
players, and we guarantee that the blue player reaches the
goal almost surely under its Nash equilibrium policy. Finally,
we demonstrate the preceding theoretical results and show
the advantage of mixed strategies and coordinated behavior
for multiple robots, by numerically solving illustrative exam-
ples and through a statistical analysis of games on randomly
generated graphs.

II. PROBLEM FORMULATION

We consider a two-player game where the blue player
moves its robots through a weighted digraph G(t) ∈ G,
where G is the set of known possible digraphs, while the
red player controls the graph G(t). We assume that G(t) =
(V, E ,W (t)), where V = {1, 2, . . . N} is the set of nodes
for N ∈ Z>0, E ⊂ V × V is the set of edges, and
W (t) ∈ RN×N is the time-varying weighted adjacency
matrix, where Wi,j(t) ≥ 0 if (i, j) ∈ E and Wi,j(t) = 0
otherwise, for i, j ∈ V . Specifically, this indicates that the
set of nodes and the set of edges are constant with time,
and only the weights of the edges are time-varying. We
consider that there is a finite number K ∈ Z>0 of possible
weighted adjacency matrices, so that W (t) ∈ W , where
W = {W 1,W 2, . . . ,WK}. Then, the set of all possible
digraphs is G = {G1, G2, . . . , GK}, where Gk = (V, E ,W k)
for k = 1, 2, . . . ,K.

We assume that there are M blue robots, where M ∈ Z>0,
and that each robot m at time t has position pm(t) ∈ V . We
collect all robot positions together into the vector p(t) =
[p1, p2, . . . , pM]T ∈ VM . Their movement is constrained by
the graph, so that if pm(t) = i, then pm(t+1) ∈

−→
N i, where−→

N i is the set of out neighbors of node i. Without loss of
generality, node N is the destination node, and the game ends
when p(t) = 1MN , so that all blue robots have reached the
destination node. To ensure this is possible to achieve for
any initial conditions, we assume that there exists a path
from each node in G to node N . Additionally, we assume
that there exists a self-loop on node N with an edge weight
of 0, so that any blue robots that reach the goal can remain
there without incurring any additional costs.

The red player’s action is to select the graph at the
next time step, so that ared(t) = k ∈ {1, 2, . . . ,K} and
G(t + 1) = Gk. Specifically, we consider that the red
player’s available actions at time t depend on the current
graph G(t), being determined by the red player’s action
graph, Gred = (V red, E red), where V red = {1, 2, . . . ,K} are
the nodes of this graph, which each correspond to a position
graph Gk, and E red ⊂ V red × V red is the set of edges. We
assume that the action graph is unweighted, directed, and
weakly connected, and that every node has a self loop. The
red player’s action is then determined by the edges of Gred, so
that ared(t) ∈

−→
N red

k , where
−→
N red

k is the set of out neighbors of
k in Gred, and Gk = G(t) is the graph at time t. This allows

Fig. 2. This shows an example of red’s action graph, where each square
node corresponds to one of the position graphs for the blue player, shown
inside. The outlined node indicates G(t) and the arrow indicates the action
of the red player to select G(t+ 1) = G3.

us to model cases where the red player may require multiple
time steps to change the environment and some changes may
be irreversible. See Figure 2 for a representation of Gred.

The red player consumes some limited resource, which
we refer to as ammo, by changing the position graph. More
specifically, we consider that the red player has ammo α(t)
which is initialized to α ∈ Z≥0, so that α(0) = α. Then, if
α(t) > 0, ared(t) ∈

−→
N red

k , and if α(t) = 0, ared(t) = k where
G(t) = Gk. Finally, this limited resource is consumed each
time the graph is changed, so that

α(t+ 1) =

{
α(t)− 1, for G(t+ 1) ̸= G(t)
α(t), for G(t+ 1) = G(t)

. (1)

Now, we can write the entire game state, containing
the positions of the blue robots, the current graph, and
the remaining amount of red team’s ammo, as S(t) =
(p(t),G(t), α(t)) ∈ S ≜ VM × G × {0, 1, . . . , α}.

At each time step, the blue player incurs a stage cost of

C (S, ablue(t)) =

M∑
m=1

W
pm,p+

m
(t), (2)

where, with some abuse of notation, pm is the position of
robot m at time t and p+m is its position at time t + 1, for
m ∈ {1, 2, . . .M}. Recall that the red player’s action at the
previous time, ared(t−1), indirectly affects this cost through
the graph G(t). The total cost incurred by the blue player
is the sum of the weights for the edges traversed by all
robots, and the goal of the blue player is to minimize the
cost incurred to reach the goal. Due to the presence of the
antagonistic red player in this zero-sum game, this cannot
simply be solved as a shortest path problem.

The set of valid actions for the blue player is Ablue(S) =−→
N out

p1
×

−→
N out

p2
× · · · ×

−→
N out

pM
and the set of valid actions for

the red player is

Ared
(
(p,Gk, α)

)
=

{−→
N red

k , if α(t) > 0
k, if α(t) = 0

. (3)

The game dynamics, given the actions of the players, can
be described as

p(t+ 1) = ablue(t) ∈ Ablue(S)

G(t+ 1) = Gared(t), ared(t) ∈ Ared(S)

α(t+ 1) =

{
α(t)− 1, for Gared(t) ̸= G(t)
α(t), for Gared(t) = G(t)

. (4)

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2149 submitted to 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Received March 17, 2024.

To facilitate describing mixed strategies, we formulate a
stochastic game, where the state dynamics are a Markov
chain and the transition probabilities are influenced by
the actions of both players [8]. The Markov chain is
(S, Ablue, Ared, P), where we consider deterministic dynam-
ics, such that the transition probabilities P : S × S ×VM ×
{1, 2, . . . ,K} → {0, 1} are in accordance with (4).

We define mixed policies for the blue player and the
red player as mappings πblue : S → ∆Ablue(s), where
∆Ablue(s) ⊂ [0, 1]|Ablue(s)| is the simplex over Ablue(s), and
πred : S → ∆Ared(s), respectively, for s ∈ S. Now, we can
formally write the expected cost of the game as

J(S(0), πblue, πred) = E

[∞∑
t=0

γtC (S(t), ablue(t))

]
, (5)

where γ ∈ (0, 1] is a discount factor. Note that, due to
the presence of a zero cost self-loop on the goal node, no
further costs will be accrued once all blue robots reach the
goal. Recalling that we consider a zero-sum game, we seek
a pair of strategies π∗

blue(·), π∗
red(·) which corresponds to a

Nash equilibrium, so that

J(s, π∗
blue, π

∗
red) ≤ J(s, πblue, π

∗
red)

J(s, π∗
blue, π

∗
red) ≥ J(s, π∗

blue, πred), (6)

for all s ∈ S and all valid mixed strategies πblue, πred.
Although, in our original problem, γ = 1, having γ ∈ (0, 1)
allows us to use the results in [8] to guarantee that such
strategies exist and that the outcome associated with them is
unique, for our zero-sum stochastic game. This allows us to
define the value function for the equilibrium strategies as

V (s) = J(s, π∗
blue, π

∗
red), (7)

for s ∈ S, which simply gives the (discounted) value of the
game outcome, provided both players use the equilibrium
strategies. Note that γ is not a parameter of the original
problem we want to solve, but rather it is chosen to get
an approximate solution, because the presence of a discount
factor allows us to make guarantees that Nash equilibria of
the game exist and have the same value [11], [8].

III. THEORETICAL ANALYSIS

A. Handling Multiple Blue Robots

Thus far, we have considered that there are M ≥ 1 blue
robots moving in graph G(t). In this section, we show how
we can consider only a single blue robot, without losing
generality by constructing a joint state graph [12]. To handle
this case, instead of considering multiple robots moving on
the graph G(t), we can equivalently consider a single robot
moving on a modified joint graph G′(t) = (V ′, E ′,W ′(t)),
where each node in G′(t) corresponds to a position vector
p(t). Each weighted adjacency matrix W (t) ∈ W will have a
corresponding joint weighted adjacency matrix W ′(t) ∈ W ′

,
and so |W ′| = |W|. Similarly, we have a joint graph set
G′

= {G′1, . . . ,G′K}, where G′k = (V ′, E ′,W ′k), for k =
1, . . . ,K. Instead of needing a position vector p(t) ∈ VM

(a) (b)

Fig. 3. (a) shows a simple example graph, and (b) shows the structure of
its joint state graph with two blue robots. The position of each node of the
JSG indicates what nodes in the original graph it corresponds to. We have
assumed that robots are indistinguishable. The markers show a position of
two robots in the base graph and the corresponding position in the JSG,
and the arrows show an equivalent action in both graphs.

which gives the node locations of the individual robots on the
graph G(t), we only need a scalar joint position p′(t) ∈ V ′.

To construct this, we assign each position vector p(t) ∈
VM to a node ℓ in G′, by defining a one-to-one mapping T :
VM → V ′, where V ′ ≜ {1, 2, . . . , NM} and T (1MN) =
NM which is the goal node in the new graph. Then, for each
node ℓ ∈ V ′, we determine its out-neighbors by finding the
next position for each action of the blue player. More specif-
ically, for ℓ ∈ V ′, we have a corresponding position vector
p(t) = [i, . . . , j]T with i, . . . , j ∈ V , and the next position is
p(t+1) = [i+, . . . , j+]T , where i+ ∈

−→
N i, . . . , j

+ ∈
−→
N j . For

each p+ = p(t+ 1), we have an ℓ+ ∈ V ′, which means that
(ℓ, ℓ+) belongs to the set E ′. Next, for each k = 1, 2, . . . ,K
we determine the corresponding weight in W ′k for that edge.
For each edge (ℓ, ℓ+) ∈ E ′, we set

W ′k
ℓ,ℓ+ = W k

i,i+ + · · ·+W k
j,j+ , (8)

where ℓ = T ([i, . . . , j]T) and ℓ+ = T ([i+, . . . , j+]T).
Therefore, we are able to convert any game with M > 1
on graph G(t) to a game with M = 1 on graph G′(t)

Finally, because blue robots are identical, we can reduce
the size of the joint state graph by considering that robots are
indistinguishable, allowing for simpler games. For the case
of two blue robots, for example, the number of nodes in G′

is 1
2N(N + 1) < N2, for N > 1. Figure 3 shows the joint

state graph for two robots for a simple base graph.

B. Game Solution and Value

Here we present some theoretical results on the game
solution and value, before moving on to numerical meth-
ods for more complete solutions. Firstly, we provide some
preliminaries to aid in the analysis. Define the “highest cost”
graph as G = (V, E ,W), where

W ij ≜ max
k

W k
ij . (9)

To simplify notation, let dG(i, j), for i, j ∈ V denote the
distance from node i to node j on graph G, where the

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2149 submitted to 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Received March 17, 2024.

distance between two nodes is the length of the shortest
path between them. Now, we provide a condition on the
discount factor γ, which will be needed for certain results.
The condition is

γ ≥ 1− Cmin

dmax
, (10)

where

Cmin ≜ min
(i,j)∈E\(N,N),k∈{1,...,K}

W k
i,j > 0 (11)

dmax ≜ max
p∈V

dG(p,N). (12)

Cmin is the minimum possible stage cost that can be achieved
without p(t) = N . Note that this is strictly positive by
assumption on the graph weights. dmax is the maximum
distance of any node from the goal on the highest cost graph
G. This condition is sufficient, for example, to guarantee that
it is more costly for the blue player to never reach the goal.
Finally, note that

lim
γ→1−

Cmin

1− γ
= ∞. (13)

Because dmax does not depend on the value of γ, there always
exists γ ∈ (0, 1) such that J (s) < 1

1−γCmin. Since the
discount factor γ is a parameter we can choose to help find
a solution, rather than being defined by the problem, we can
always chose it so that (10) is satisfied.

C. Bounds for the Outcome

Here we provide security strategies for both players
which allow us to bound the expected game outcome
J(s, πblue, πred), for s ∈ S. The motivation here is that,
although we may not know how to find the value or the Nash
equilibrium policies theoretically, and approximating them
numerically may be computationally intensive, these bounds
will be relatively simple to compute and can be achieved by
simple naive strategies.

1) Blue Player’s Security Strategy: Consider a policy for
the blue player π̂blue where the action in state s ∈ S is

ablue ∈ arg min
p+∈Ablue(s)

W k
p(t)p+ + dG(p

+, N), (14)

and a corresponding upper bound

J (s) = min
p+∈Ablue(s)

W k
p(t)p+ + dG(p

+, N). (15)

This means that the blue player optimizes over the edge costs
of the current graph with the distance over the highest cost
graph G as an estimate of the future value.

Theorem 1: For M = 1, if the blue player follows the
policy π̂blue defined by (14), then

J (s) ≥ J(s, π̂blue, πred) and J (s) ≥ V (s), (16)

for all s ∈ S and πred, with J (s) defined in (15).
Proof: For reasons of space, we provide only a sketch

of the proof.
If the blue player follows the shortest path on G, then

J(s, . . .) ≤ dG(p,N), regardless of the red player’s policy.
Now, if the blue player follows policy π̂blue at the current

time step, but follows the shortest path on G for all future
time, then we have J(s, . . .) ≤ J (s). However, we need
to show that this holds if the blue player follows policy
π̂blue for all future time. Because W k

p(t)p+ ≤ W p(t)p+ , we
have J (s) ≤ dG(p,N), trivially from (15). This means that
dG(p

+, N) can act as an upper bound for the future cost,
if the blue player uses π̂blue for all future time. This allows
us to guarantee that the bound is satisfied if the blue player
chooses its action according to (14). Finally, to bound the
value, note that

J (s) ≥ J(s, π̂blue, π
∗
red) ≥ V (s). (17)

Note that this may be a conservative bound, because it
assumes that the red player will know all the blue player’s
actions, that the red player has complete control over the
graph (not being limited by ammo for instance), and that the
blue player will not use any information about G(t) for all
future times.

2) Red Player’s Security Strategy: Now, consider that the
red player selects its action according to

ared ∈ arg max
k+∈Ared(s)

min
p+∈Ablue(s)

W k
pp+ + γN−1dGk+ (p+, N),

(18)

with a corresponding lower bound

J (s) ≜ max
k+∈Ared(s)

min
p+∈Ablue(s)

W k
pp+ + γN−1dGk+ (p+, N).

(19)

Theorem 2: Under the condition (10), for M = 1, if the
red player follows the policy π̂red defined by (18), then

J (s) ≤ J(s, πblue, π̂red) and J (s) ≤ V (s), (20)

for all s ∈ S and πblue, with J (s) defined in (19).
Proof: Again, for reasons of space, we provide only

a sketch of the proof. First, consider the case where the
red player never changes the graph, letting π′

red be such that
ared(t) = k for G(t) = Gk. Now, define

dγ
Gk(p) ≜ min

πblue
J((p,Gk, α), πblue, π

′
red), (21)

which is the minimum discounted distance to the goal on this
graph, and is the result of the blue player’s best response to
this policy π′

red. If condition (10) is satisfied, then it can be
shown that shortest paths to the goal do not contain repeated
nodes. Therefore, we can upper bound the number of edges
traversed on such a path by N − 1. This allows us to claim

dγ
Gk(p,N) ≥ γN−2dGk(p,N), (22)

because γN−2 is the lowest discount which can be achieved
on a shortest path. Now, consider that the red player selects
its action according to (18) for the current time step and
leaves the graph constant for future time steps, in which
case the outcome is lower bounded by J (s) for all πblue, by
its definition. We must again show that this still holds if the
red player follows π̂red for all future time. This follows from
the fact that

J
(
(p,G

k, α)
)
≥ γN−2dGk(p,N). (23)

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2149 submitted to 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Received March 17, 2024.

Finally, to bound the value, note that

J (s) ≤ J(s, π∗
blue, π̂red) ≤ V (s). (24)

This bound may be conservative because it assumes that
the red player can only change the graph at the current time
step and doesn’t account for future changes, and because it
assumes that the blue player will choose its best response
actions.

D. Game Solution

Here we guarantee that, if both players use Nash equi-
librium strategies π∗

blue and π∗
red, then the blue player is

guaranteed to reach the goal, under mild assumptions. Note
that if γ < 1, the blue player can achieve a finite cost without
reaching the goal.

Theorem 3: For M = 1, given an initial condition S(0) ∈
S, under the Markov chain with state transitions given by (4)
with actions chosen according to π∗

blue, π
∗
red satisfying (6), if

γ satisfies (10), then limt→∞ Pr (p(t) = N) = 1.
Proof: We present only a sketch of the proof for reasons

of space. If the policies of both players are fixed to their
Nash equilibrium values, the game reduces to a Markov
chain. Therefore, we simply need to show that any state
s = (p, k, α) ∈ S where p = N is an absorbing state and
any other states are not absorbing for this Markov chain [13].
Then, if we can show that the Markov chain is absorbing,
we have our desired result.

Because the goal node N has a self-loop with an edge cost
of zero, we know that if the blue player reaches the goal,
then it accrues no further costs under an equilibrium blue
policy, so J((N, k, α), π∗

blue, π
∗
red) = 0 and so we must have

p(t) = N for all future time and these states are absorbing.
If, under some policy πblue, the blue player never reaches

the goal (the probability of reaching the goal from state
S(t) ∈ S is zero), then the value can be lower bounded:

J(s, πblue, πred) ≥
∞∑
t=1

γtCmin =
1

1− γ
Cmin, (25)

by assuming that it gets the minimum cost at every time and
from evaluating the geometric series.

Because we have an upper bound for the value V (s), if
we can guarantee that V (s) < 1

1−γCmin, then we know that
there is a positive probability that, under Nash equilibrium
policies, the blue robot reaches the goal at some future
time step from state s. Noting that V (s) ≤ dmax, from the
condition (10), we know that V (s) ≤ V (s) < 1

1−γCmin for
all s ∈ S, so there must be a strictly positive probability that
the blue robot reaches the goal from every state s. This also
guarantees that no state with p ̸= N is absorbing.

Now, because we have shown that, from every state S(t) ∈
S there is a strictly positive probability that p(t′) = N for
some t′ ≥ t, we can claim that the Markov chain induced by
NE policies is absorbing. Therefore, we can guarantee that
limt→∞ Pr (p(t) = N) = 1.

IV. NUMERICAL METHODOLOGY

Because we believe that solving for these equilibrium
strategies π∗

blue, π
∗
red analytically is not feasible within this

work, we turn to numerical methods. We use a value iteration
method based on the work of Shapley [11], [8]. First, we
define a matrix valued Q function Q ∈ R|Ared(s)|×|Ablue(s)|

≥ as
a function of the state s ∈ S, where each element is

Qar,ab
(s) = C (s, ablue) + γV (s+), (26)

where ar ∈ Ared(s) is an action of the red player, ab ∈
1, 2, . . . , |Ablue(s)| is an index corresponding to blue player’s
action ablue, and s+ is the state at the next time step from
(4), given ablue and ar. This function gives the value of
the game outcome if each player takes an arbitrary action
at the current time step, but then follows the equilibrium
policy (π∗

blue or π∗
red) for all future time steps. According to

Shapley’s Theorem, the equilibrium policies π∗
blue(s), π

∗
red(s)

and the game value can then be found by solving the matrix
game corresponding to Q(s), for each state s ∈ S, where
here the red player is the row player and maximizing and
the blue player is the column player and minimizing [8].
However, because we do not know the value function, we
instead use numerical methods to calculate the Q function.

For each iteration τ , we compute the estimate of the
policies πτ

blue, πτ
red for the given estimate of the Q function

Q̂τ , by solving the matrix game corresponding to Q̂τ (s) for
each state s ∈ S. Next, we update the estimate of the Q
function Q̂τ+1 using those policies as follows:

Q̂τ+1
ab,ar

(s) = C (s, ablue) + γπτ
red

T Q̂τ (s+)πτ
blue, (27)

for each s ∈ S , ab ∈ 1, 2, . . . , |Ablue(s)|, and ar ∈ Ared(s),
and where s+ is found using (4) and ablue is the action
corresponding to ar. When this converges, πτ

blue, π
τ
red can

approximate the equilibrium strategies π∗
blue, π

∗
red.

A. Simplifying Computation

Here we provide methods which will simplify the numer-
ical computation of the value.

1) Dominated Blue Actions: Under certain circumstances,
it is possible to determine that there are some edges that it
is never beneficial for the blue robot to take as it traverses
the graph. Specifically, we look for dominated actions. For a
given game state S(t) ∈ S, let p(t) = p0 ∈ V , and consider
two actions of the blue player, p1, p2 ∈ Ablue(S). A sufficient
condition for action p2 to dominate action p1 is

C(S, p1) + γJ ((p1, G
ar , αar)) ≥

C(S, p2) + γJ ((p2, G
ar , αar)) , (28)

for all ar ∈ Ared(S), where αar is the red player’s new ammo
count as determined by S and ar according to (4).

Because the blue player never benefits from using a
dominated strategy, we can use the condition (28) to remove
edges from the graphs before solving for the value, without
changing the results. Specifically, if condition (28) is satis-
fied for some p0, k, p1, p2 and all α, then we can remove
edge (p0, p1). Therefore, one could iterate over all pairs of
actions for all nodes, removing the edges corresponding to

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2149 submitted to 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Received March 17, 2024.

dominated actions, and finally remove any nodes from which
the goal node cannot be reached. This allows the game to
be solved for fewer states and actions for the blue player,
without changing the results.

2) Sub-Game Formulation: From equations (5) and (7),
we can write the value, for a given game state S(t) = s =
(p,G, α) ∈ S, as

V (s) =
∑
s′∈S

Pr
{
s+ = s′

}(
C(s, p′) + γV (s′)

)
,

where s+ = (p+, G+, α+) = S(t + 1) ∈ S and s′ =
(p′, G′, α′) ∈ S, and Pr{s(t + 1) = s′} is found according
to (4) when the actions are chosen according to Nash
equilibrium policies, π∗

blue and π∗
red. Now, the two possibilities

are either the graph remains the same, in which case s+ =
(p+, G, α), or it is changed by the red player, in which case
s+ = (p+, G+, α− 1). This is important, because it implies
that the value of the game at some ammo state α depends
only on the value at lower ammo states α′ ≤ α. We can take
advantage of this to formulate sub-games which allow us to
solve the original game.

Instead of considering the graph G and the ammo α to be
part of the game state, we consider them to be parameters
of a sub-game. The game state of the sub-game is simply
blue’s position p, and the sub-game ends when red takes
action to change the graph. The actions of the players, the
game dynamics, and the stage costs are the same as before,
but now we consider a terminal cost when the red player
ends the sub-game by changing the graph. The value for
the sub-game defined by graph G and ammo α is VG,α(p)
for sub-game state p ∈ V , and the terminal costs will be
VG(T),α−1(pT), where pT is blue’s position when red takes
action to change the graph to G(T) ̸= G at time T − 1. We
can write the outcome of this sub-game, for p(0) = p, as

VG,α(p) = E
[T−1∑

t=0

γtC (S(t), p(t+ 1))

+ γTVG′,α−1(p(T))
]
. (29)

Note that VG,0(p) = dG(p,N), allowing us to solve for the
value of the full game by iteratively solving the sub-games,
using the value of the sub-games with ammo α to solve for
the value of the sub-games with ammo α+ 1.

Compared to the full game, if we have K different graphs
with N nodes and a maximum ammo of α, the trade-off
is considering Kα sub-games with N states each, instead of
considering one game with NKα states. Because the number
of game states corresponds to the number of Q-matrices
which must be updated and the number of auxiliary matrix
games which must be solved at every iteration, solving the
game as sub-games may result in less computation, as only
the Q-matrices and value relevant to the currently considered
sub-game must be updated at a time.

V. NUMERICAL RESULTS

Here we show the results of applying the numerical meth-
ods in Section IV. Unless otherwise specified, the discount

Fig. 4. This graph results in mixed strategies; node 4 is the goal node.
The blue arrows indicate the possible actions of the blue player under the
equilibrium strategy from node 1. On graph 1, the red player also mixes
over its three options, but on graph 2 or 3, the red player only mixes between
selecting graph 2 and graph 3.

factor was chosen to be γ = 1 − 10−9 ≈ 1 and the red
player’s action graph Gred is complete. First, we show and
discuss the results for some interesting cases, and then we
perform a statistical analysis of randomly constructed graphs.

A. Illustrative Examples

a) Benefit of Mixing: Figure 4 shows an example graph
where each player mixes between three options from node 1,
with the blue player mixing between remaining at that node
and between taking either branch. With s(0) = (1, G1, 1),
the blue player chooses its action according to [Pr(p+ =
1),Pr(p+ = 2),Pr(p+ = 3)] = [0.5, 0.25, 0.25], while the
red player chooses its action according to π∗

red(s(0)) =
[0.5, 0.25, 0.25]T . Intuitively, the blue player seems to mix
between remaining at the current node and moving towards
the goal when the current graph has a high immediate edge
cost, while the red player is incentivized to change the graph
because the current graph has lower costs closer to the
goal. On the other hand, if G(0) = G2 instead, the blue
player chooses its action according to [Pr(p+ = 1),Pr(p+ =
2),Pr(p+ = 3)] = [0, 0.5, 0.5], and the red player chooses its
action according to π∗

red(s(0)) = [0, 0.75, 0.25]T . In this case,
the players both only mix between two different actions,
because one path is cheaper on one graph, and the other
path is cheaper on the other graph.

b) Benefit of Multi-Robot Coordination: The graph in
Figure 5 shows a case where having more robots is beneficial
for the blue player. The only differences between the two
graphs are that the (5, 7) edge weight is cheaper in Graph
1 and the (6, 7) edge weight is cheaper in Graph 2. Due to
the longer length of these branches (compared to the graphs
in 4), the red player can simply choose G(t+1) = G1 when
p(t) = 4 or G(t + 1) = G2 when p(t) = 3, forcing the
blue player to take the higher edge cost. If the blue player
has multiple robots, however, then they can split up in a
coordinated fashion, so that at least one of them takes the
cheaper path. To formalize this benefit, we define the average
value per robot as ṼM (s) ≜ V (s)/M . When α(0) ≥ 1, for a
single robot (M = 1), Ṽ1(S(0)) = 20 with p(0) = 1, but for
two robots, Ṽ2(S(0)) = 13 with p(0) = [1, 1]T , G(t) = G2,
and α(0) ≥ 1. This indicates that, depending on the graphs,
the blue player can gain an advantage from having multiple
robots which split up in a coordinated fashion.

Another type of coordinated behavior seen in Figure 5 is
that the robot which could traverse fewer edges to reach the
goal instead waits at node 5. If this leading robot on node
5 goes to the goal immediately, then the red player could

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2149 submitted to 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Received March 17, 2024.

Fig. 5. Here, it is better for the blue player to have multiple robots which
split up to reach the goal node 7. The blue arrows, shown on graph 1, show
the policy of a single robot starting at node 1, with the speech bubbles
indicating the time of each action. The blue arrows shown on graph 2
indicate the paths followed by two blue robots starting from node 1. For
M = 1, and α(0) = 1, the red player will always change the graph so
that the blue player will get a cost of 16 for taking the (6, 7) edge, but for
two robots the red player’s policy has no effect on the game outcome and
exactly one robot will take the cheaper path to the goal.

switch the graph so that both robots must take the 16 cost
to the goal. Instead, that robot waits, which is more costly
for itself, but since both robots traverse the final risky edges
synchronously, at least one of them achieves the cheaper cost.

c) A More Practical Example: Here, we discuss how
these strategies we’ve discussed on smaller graphs fit into a
larger graph. Figure 6 shows portions of an example trajec-
tory under equilibrium policies for a larger graph of N = 10
nodes, with M = 4 blue robots, and a maximum ammo
count for the red player of α = 5, while Table I contains
more details. Both players employ mixed strategies, so this
is only one possible outcome for these initial conditions. For
example, at t = 1, the blue player’s policy can be described
by [Pr(p+ = [1, 1, 5, 6]T),Pr(p+ = [1, 1, 6, 6]T),Pr(p+ =
[1, 2, 6, 6]T)] = [0.4928, 0.3482, 0.1590] and the red player’s
is π∗

red(s(1)) = [0.6536, 0.0818, 0.2646]T . Additionally, the
blue player makes use of some self-loops to allow some of
its robots to wait, and the blue robots also split up. The value
per robot is Ṽ4(S(0)) = 14.4667, while the value per robot
for a single robot is higher at Ṽ1(S(0)) = 15.2474, again
suggesting that having more robots is helpful for the blue
player. Finally, this value is between the lower and upper
bounds for the value, V (S(0)) = 12 and V (S(0) = 80, as
we expect.

t p(t) G(t) α(t)
∑t−1

t′=0
C(t′)

0 [1, 1, 1, 1]T G1 5 0
1 [2, 2, 1, 1]T G1 5 18
2 [6, 6, 2, 1]T G1 5 31
3 [10, 10, 5, 1]T G2 4 38
4 [10, 10, 10, 2]T G3 3 50
5 [10, 10, 10, 6]T G3 3 54
6 [10, 10, 10, 10]T G3 3 62

TABLE I
EXAMPLE NASH EQUILIBRIUM TRAJECTORY FOR THE GRAPHS SHOWN

IN FIGURE 6

B. Statistical Results

To statistically demonstrate some properties of this game
and its solution, we constructed graphs in a random fashion.
More specifically, we used a modification of the canonical
Erdős–Rényi model [14]. For a given set of nodes V of

size Nmax, the probability that any given pair of nodes
(i, j) ∈ V × V , for i ̸= j, is in the edge set of the graph
is a constant φ ∈ [0, 1]. We also consider directed edges
and possible self-loops, and we take φ = 0.5. To ensure
the goal can be reached from all nodes, we find the longest
directed distance between any two nodes, and assign one of
those ending nodes to be the goal node and a corresponding
starting node to be node 1. Then, we remove any nodes, after
the initial generation, from which the goal node cannot be
reached, which results in a graph with N ≤ Nmax nodes.
Finally, we add a self-loop to the goal node N , if necessary.
We set K = 3, and randomly assign edge weights for each
graph Gk so that, for (i, j) ∈ E and i ̸= j, (W 1

ij ,W
2
ij ,W

3
ij)

is a permutation of the set {2, 4, 8}, and each permutation
is chosen with equal probability. The self-loop weights are
assigned according to W k

ii = 1 for (i, i) ∈ E and i ̸= N and
W k

NN = 0. Using this method, 100 graphs were generated
for each initial graph size Nmax between 4 nodes and 8 nodes.

We consider a common initial condition, where all blue
robots are on node 1 in graph 1, so that p(0) = 1M and
G(0) = G1, and the red player has ammo α(0) = 6.
In Figure 7, the values for this initial condition have been
normalized so that the lower bound J (s(0)) is zero and the
upper bound J (s(0)) is one in the plot. Some trivial graphs
have been excluded from the results because J (s(0)) =
J (s(0)) on them. The bounds are respected in all cases,
and are sometimes tight. Additionally, the median and mean
normalized value exhibits a downward trend as the number
of nodes increases. This is likely because more nodes makes
it more probable that the blue player will have more options
for paths to take to the goal, allowing it to gain an advantage
through mixed policies, for example.

a) Effect of the Number of Blue Robots: As discussed
in the preceding sections, we expect that having more blue
robots will decrease the cost per robot. Figure 7 also plots
the values per robot ṼM (S(0)) for the random graphs for
different numbers of robots. For the sake of computation
time, the game was solved for M = 4 only for graphs with
N ≤ 7. We observe that the mean value per robot does
decrease as the blue player’s number of robots increases for
these graphs, for each graph size. This is evidence that having
more robots is indeed an advantage for the blue player.

b) Effect of the Red Player’s Ammo Count: Figure 8
shows the effect of the red player’s ammo count on the
normalized game value. Here, the same initial position for the
blue player is considered, but the initial amount of ammo for
the red player is varied. The average of the normalized values
is taken over all the random graphs and plotted against the
ammo count. As expected, the value is nondecreasing with
respect to the ammo count, and the value plateaus around
3 or 4 ammo, below the upper bound for the value. This
suggests that having more ammo stops benefiting the red
player in terms of the value, once it is high enough.

VI. CONCLUSIONS

To handle uncertainty in a time-varying environment, we
have formulated a novel zero-sum game where the blue

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2149 submitted to 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Received March 17, 2024.

Fig. 6. This shows part of an example trajectory, under equilibrium strategies, for a game on a larger graph with the goal as node 10, with four blue
robots. The game state is shown for t ∈ {2, 4, 6}. The circle markers indicate the positions of the blue robots, the filled chevrons indicate the remaining
ammo, and the arrows indicate the blue robots’ movement on previous time steps. Specifically, the double-lined arrows indicate two robots moving together,
the solid lines indicate movement on the preceding time step, and the dotted lines indicate movement on the time step before that. See Table I for the full
trajectory. We also observe that the blue robots wait at node 1 and split up, so that not all take the expensive first edges from node 1 on graph 1.

4 5 6 7 8

Number of nodes

0

0.2

0.4

0.6

0.8

1

C
o
s
t
p
e
r

A
g
e
n
t

Cost from Node 1 and Graph 1 with ammo 6

1 agent

2 agents

4 agents

Fig. 7. This shows the value per robot ṼM (S(0)), from a common initial
condition, over about 500 random graphs, which has been normalized so
that the lower bound is zero and the upper bound is 1. For each different
number of blue robots, the value is plotted against the number of nodes in
the random graphs. The plus sign indicates the mean, the center horizontal
line indicates the median value, the middle 50% of the values are inside
the box, the whiskers indicate the furthest non-outlier values, and the circles
indicate the outliers. The values are always between the upper and lower
bounds, there is a general downward trend in the median and mean value
as the number of nodes increases, and the mean decreases with increasing
numbers of robots.

Average Cost from Node 1 and Graph 1

1 2 3 4 5 6

Ammo

0.6

0.7

0.8

C
o

s
t

Fig. 8. This shows the average, over about 500 random graphs, cost from
the starting node to the ending node, as a function of ammo. It’s been
normalized so that the lower bound is zero and the upper bound is 1, but
the plot bounds are only between 0.6 and 0.8 to save space. The value
appears to be a nondecreasing function of the ammo and it asymptotically
approaches a value which is significantly lower than the upper bound.

player’s robots move through a graph with time-varying costs
to reach a goal, while the red player controls controls those
costs. This can be appropriate for robots moving through haz-
ardous environments, either to model the worst-case scenario
or to handle an actual adversary. Due to the complexity of the
game, we provided security strategies for both players, and
demonstrated the game solution through numerical methods,
with a theoretical guarantee that the blue robots reach the
goal. We provided methods to simplify computation, and

find that both players benefit from mixed strategies, while
the blue player benefits from having multiple robots which
use coordinated strategies. These include splitting up and
waiting to traverse risky edges synchronously, ensuring at
least some take the cheaper paths. In future work, we may
analytically solve the game in some specific cases.

REFERENCES

[1] B. Ding, J. X. Yu, and L. Qin, “Finding time-dependent shortest paths
over large graphs,” in Proceedings of the 11th international conference
on Extending database technology: Advances in database technology,
pp. 205–216, 2008.

[2] X. Cai, T. Kloks, and C.-K. Wong, “Time-varying shortest path prob-
lems with constraints,” Networks: An International Journal, vol. 29,
no. 3, pp. 141–150, 1997.

[3] Y. Yuan, X. Lian, G. Wang, Y. Ma, and Y. Wang, “Constrained shortest
path query in a large time-dependent graph,” Proceedings of the VLDB
Endowment, vol. 12, no. 10, pp. 1058–1070, 2019.

[4] C. A. Dimmig, K. C. Wolfe, and J. Moore, “Multi-robot planning
on dynamic topological graphs using mixed-integer programming,” in
2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 5394–5401, IEEE, 2023.

[5] K. Durkota, V. Lisy, B. Bošansky, and C. Kiekintveld, “Optimal
network security hardening using attack graph games,” in Proceedings
of IJCAI, pp. 7–14, 2015.

[6] T. H. Nguyen, M. Wright, M. P. Wellman, and S. Baveja, “Multi-stage
attack graph security games: Heuristic strategies, with empirical game-
theoretic analysis,” in Proceedings of the 2017 Workshop on Moving
Target Defense, pp. 87–97, 2017.

[7] K. C. Nguyen, T. Alpcan, and T. Basar, “Stochastic games for
security in networks with interdependent nodes,” in 2009 International
Conference on Game Theory for Networks, pp. 697–703, IEEE, 2009.

[8] J. Filar and K. Vrieze, Competitive Markov decision processes.
Springer Science & Business Media, 2012.

[9] S. Kloder and S. Hutchinson, “Partial barrier coverage: Using game
theory to optimize probability of undetected intrusion in polygonal
environments,” in 2008 IEEE International Conference on Robotics
and Automation, pp. 2671–2676, IEEE, 2008.

[10] D. Shishika, D. G. Macharet, B. M. Sadler, and V. Kumar, “Game
theoretic formation design for probabilistic barrier coverage,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 11703–11709, IEEE, 2020.

[11] L. S. Shapley, “Stochastic games,” Proceedings of the national
academy of sciences, vol. 39, no. 10, pp. 1095–1100, 1953.

[12] M. Limbu, Z. Hu, S. Oughourli, X. Wang, X. Xiao, and D. Shishika,
“Team coordination on graphs with state-dependent edge costs,” in
2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 679–684, IEEE, 2023.

[13] J. G. Kemeny and J. L. Snell, Finite markov chains, vol. 26. van
Nostrand Princeton, NJ, 1969.

[14] P. Erdős, A. Rényi, et al., “On the evolution of random graphs,” Publ.
math. inst. hung. acad. sci, vol. 5, no. 1, pp. 17–60, 1960.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2149 submitted to 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Received March 17, 2024.

