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Abstract— This paper studies a team coordination problem
in a graph environment. Specifically, we incorporate “support”
action which an agent can take to reduce the cost for its team-
mate to traverse some edges that have higher costs otherwise.
Due to this added feature, the graph traversal is no longer
a standard multi-agent path planning problem. To solve this
new problem, we propose a novel formulation that poses it as
a planning problem in the joint state space: the joint state
graph (JSG). Since the edges of JSG implicitly incorporate
the support actions taken by the agents, we are able to now
optimize the joint actions by solving a standard single-agent
path planning problem in JSG. One main drawback of this
approach is the curse of dimensionality in both the number of
agents and the size of the graph. To improve scalability in graph
size, we further propose a hierarchical decomposition method
to perform path planning in two levels. We provide complexity
analysis as well as a statistical analysis to demonstrate the
efficiency of our algorithm.

I. INTRODUCTION

In this work, we are interested in designing coordinated
group motion, where the safety or cost for one agent to move
from one location to another may depend on the support
provided by its teammate. As an example, let’s say there are
two robots traversing an environment represented as a graph
in Fig. 1. Starting from 1, the robots face a wall, represented
by a red edge. The robots could either climb a ladder together
and potentially fall and break (move from 1 to 4 together), or
one robot could hold the ladder (support from 2) while the
other moves up from 1 to 4. The former option is high risk,
while the latter is low risk and preferable. Alternatively, if
the ladder is bolted to the ground, then climbing together can
be low risk and preferable. This paper develops a framework
to study when such coordination is beneficial.

The terms cooperation and coordination take various
meanings in different contexts. There is research done on the
coordination of actions of agents to reach a state of order,
such as consensus and formation control [1]–[5]. Others
study cooperation in terms of simultaneously performing
tasks in a spatially extended manner, like in surveillance
[1], [6] and sampling [7]. Cooperation is also explored in
problems where agents need to react locally to avoid conflict
or collision, as can be seen in transportation systems on the
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Fig. 1. Example of an environment graph with risk edges and supporting
nodes.

road [8], in the air [9], and in general robotic cooperation
problems [10]–[12]. We see in these situations that there is
little coupling between the agents – agents do not rely on
each other to make progress, but simply need to not be in
each other’s paths. In this work, we are interested in tightly
coupled agents that depend on each other for support in order
to meet their objective.

We study support in the context of mitigating some risks
that exist in the environment. Such risk has been formulated
and studied in various ways. For instance, probability of
achieving certain levels of performance in a stochastic setting
has been considered [13]–[16]. Others have considered types
of risk measures such as coherent risk measures [17], like
conditional value-at-risk (CVaR) [18], [19] and entropic
value-at-risk (EVAR) [20]. Risk can also be characterized in
terms of chance constraints [21]. Game theory is considered
to account for the risk associated with the uncertainty in the
adversary’s behavior [22]. Yet, risk can purely be described
as the “cost” of traversal [13]. In this work, we will only use
this cost of traversal approach to simplify the analysis.

Cooperation has been studied both in centralized and dis-
tributed settings. Decentralized systems are better at handling
scalability and computational efficieny [23], [24]. When it
comes to Distributed Continual Planning (DCP) [25], plan
generation and execution can happen concurrently. As it re-
lies on communication between agents, it is better suited for
online planning. On the other hand, centralized systems are
better for offline planning [26]. It is less likely to suffer from
communication costs, information loss, and synchronization
issues [27]. A centralized approach is better suited for tightly
coupled agents that require a high degree of coordination
[28]. For that reason, we use a centralized approach in our
work.

Since we take a centralized approach, ensuring computa-
tional tractability becomes a challenge. Approaches to sim-
plifying a multi-agent planning problem have been widely
studied, such as decomposition, graph reformulation, and



others [28]–[30]. In our work, we develop a hierarchical
decomposition method on a reformulated graph to solve a
multi-agent path planning problem with high coordination.

The contribution of the paper are: (i) the formulation
of a new multi-agent coordination problem with strong
coupling between teammembers’ positions and action; (ii)
a conversion of the problem into a simple single-agent path-
planning problem; and (iii) development of a hierarchical
decomposition scheme that alleviates the curse of dimen-
sionality.

II. PROBLEM FORMULATION

We consider a scenario where a team of robots must move
from their initial locations to some goal locations. More
specifically, we are interested in a situation where the cost
of traversal is affected by the presence and actions of other
team members. In the following, we will introduce the base
graph, and then formulate how the edge cost changes based
on the “support” provided by the teammate. For conciseness,
we will restrict the discussion to a two-agent team, but the
idea will generalize to a larger team size.1

The environment is modeled as a graph where nodes rep-
resent key locations and the edges represent the traversability
between them. The base graph is denoted by G = (V, E),
where V is a set of nodes, and E is a set of edges, E ⊂ V×V .
We assume G is strongly connected. The starting positions
of the agents are denoted by the node set V0 ⊂ V . The robots
seek to reach a set of goal nodes Vg ⊂ V while minimizing
the cost of traversal. The nominal cost for traversing the edge
ei,j ∈ E is a given constant, ci,j for i, j ∈ V .

Let Iab denote a path (set of edges) from a ∈ V to b ∈ V .
We use ψa,b to denote the minimum cost to move from a to
b:

ψa,b = min
Iab

∑
ei,j∈Iab

ci,j . (1)

A standard path planning will simply consider this shortest
path for each agent.

We now define the environment graph, which incorporates
the notion of risk and support. Each edge ei,j is associated
with a set of support nodes, Zi,j ⊆ V . If this set is non-
empty, then an agent at v ∈ Zi,j can provide support for the
agent traversing ei,j . The action set for an agent n ∈ {A,B}
at node i is given as An

i = {{ai,j}j∈Ni
, as}. Where Ni is

the neighborhood of i, and ai,j is the action to move to node
j given that it is in the neighborhood of i. The action as is
the support. Note, if we were to consider a team size larger
than two, we would have to explicitly denote which agent is
being supported by n.

Let pt = (ptA, p
t
B) be the position of agents A and B at

time t, and let at = (atA, a
t
B) be the actions agents A and B

1The computational complexity will be an important consideration for
scalability.
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Fig. 2. Illustrative example of an environment graph with a risk edge and
supporting nodes. Case 1 has a high risk cost. Case 2 has a low risk cost.

take at time t. The cost of an action for agent A is given as

ctA(·) =


ci,j , if aA = ai,j and pB /∈ Zi,j or aB ̸= as,

c̃i,j , if aA = ai,j , pB ∈ Zi,j , and aB = as,

c̃, if aA = as,

0, if aA ̸= as and aA ̸= ai,j ,
(2)

where (·) represents the arguments (pt, at,Zi,j).
For example, in Fig. 2, if at t = 1 agent A is at node

2 (a supporting node) and provides support to agent B as
the latter moves from node 1 to node 4, then the cost for
agent A would be c1A = c̃ and the cost for agent B would be
c1B = c̃1,4. If both agents A and B move together from node
1 to node 4, the cost for the agents would be c1A = c1B = c1,4.

In order to find the total cost at time t, we can simply sum
the costs for both agents

Ct = ctA + ctB . (3)

Let Rn = {rn1 , ..., rnm} be the set of action sequences
agent n can take from start node to goal node. Where each
sequence is the ordered set of actions taken from start to
goal from t = 1 to the time it takes for the agents to reach
the goal state, T , i.e., rnm = [a1n, ...a

T
n ].

The sum of the costs for a given sequence of actions rA ∈
RA, rB ∈ RB are

F (rA, rB) =

T∑
t=1

Ct. (4)

The goal is to find a pair (rA∗, rB∗) that minimizes the total
cost, F :

min
rA∈RA,rB∈RB

F. (5)

An illustrative example in Fig. 2, where agents A and B
need to reach goal node 5. To traverse the risk edge, they
either use or do not use support depending on how costly, or
risky, the edge is. Agents demonstrate supporting behavior
in Case 1. If agent B traverses risk edge e1,4 without support
from A, the cost for B would be c1,4 = 5. With support from
A, the reduced cost for B would be c̃1,4 = 2. The total cost at



this time step t is Ct = c̃1,4+ c̃ = 2+1 = 3. Thus, agents in
this case accrue less costs by supporting each other. Case 2 is
a scenario where the agents do not show supporting behavior
in a low risk situation. Since c1,4 = 3, B can traverse e1,4
without support from A. The total cost at this time step t is
Ct = c1,4 + 0 = 3 + 0 = 3 without A’s support.

One way to solve the minimization problem in (5) is by
posing it as an instance of MDP. However, we will introduce
a simplification using the concept of Joint State Graph in the
next section.

III. METHOD

We first introduce the concept of Joint State Graph (JSG)
which simplifies the joint action selection problem into a
standard path planning problem on graphs. To improve scal-
ability, we propose in III-B a method of decomposing JSG
to deal with scalability of the graph. Finally, we conclude
the section with a complexity analysis.

A. Joint State Graph

The problem described in the previous section can be
solved using MDP. However, we propose transforming the
environment graph into a joint state space graph. The paths
on the JSG inherit the actions of the agents, which means
we no longer need to consider the action sets. This makes
the problem simpler than MDP. Let the JSG be a graph
J = (S,L), where S = {sij : i, j ∈ V} is the set of nodes
representing joint states, and L is the set of edges.

Let s11 be the initial state assuming that V0 = (1, 1). Let
sgg be the goal state. Edges on JSG are denoted as eij,wk =
(sij , swk) if agent A can move from i to w in the base
graph, and agent B can move from j to k, i.e., ei,w ∈ E
and ej,k ∈ E . If agent A does not move, we have i = w.
Similarly, if B does not move, j = k.

Let C be the set of costs for each edge on the JSG, where
an element is denoted as Cij,wk. If A remains at i ∈ Zj,k

while B traverses from j to k ∈ Nj , the cost is defined
as Cij,ik = min{cj,k, (c̃j,k + c̃)}. This is how the edge in
JSG subsumes the action selection in the original problem.
However, if i /∈ Zj,k, then the cost is simply Cij,ik = cj,k.
The case when A moves is defined similarly. This explains
lines 7-17 of Algorithm 1. If A traverses from i to w ∈ Ni

and B traverses from j to k ∈ Nj , then we add the nominal
costs Cij,wk = ci,w + cj,k. In the case that both agents are
stationary, the cost is Cij,ij = 0 The details of the JSG
construction are in Algorithm 1.

Let U = {u1, ..., um} be the set of paths on the JSG,
where an element u = {e11,kw, ..., eij,gg} is the set of edges
from the initial state to the goal state. Then, the cost of each
path u is given by the sum of the cost of the edges on that
path in JSG,

Q(u) =
∑

eij,wk∈u

Cij,wk. (6)

Using a standard shortest-path algorithm, we can find the
optimal path that minimizes Q(u):

Q(u⋆) = min
u∈U

Q(u). (7)
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Fig. 3. Code-generated Joint State Graph from the 5-node environment
graph. Black edges are non-risky edges, red edges are risk with no support,
and green edges are risk with support.

An example of JSG is shown in Fig. 3, which corresponds
to the environment graph shown in Fig. 2. The edges
highlighted in blue indicates the optimal path u⋆ for Case 1
in Fig. 2. Importantly, we can easily identify the original
actions from the edges selected in this JSG: e.g., the use
of edge e21,24 indicates that A at node 2 supported B who
moved from node 1 to 4.

Although planning on JSG is conceptually simple, it can
become computationally expensive with greater graph sizes.
The next section addresses this issue.

B. Search Algorithm: Critical Joint State graph

In this section, we introduce a new search algorithm based
on constructing a Critical Joint State Graph (CJSG), which
has reduced computational complexity compared with the
straightforward JSG method in Sec. III-A. Note that the Joint
State Graph J has |S| = |V|2 number of nodes, leading to
high complexity if directly used for planning. To address
this issue, our key idea is to classify the agents’ movements
into coupled and decoupled modes, where only the coupled
movements need to be planned on a joint state representation,
and the decoupled movements can be independently planned
by each agent on base graph G. As visualized in Fig. 4, the
environment graph formulated in Sec. II builds on a base
graph G, then associates some of its edges with a set (Zi,j)
of support nodes. Depending on whether the edges in G
have at least one support node, we define a risk edge set
ER such that ∀ei,j ∈ ER, Zi,j ̸= ∅. Note that the support
graph in Fig. 4 does not follow the standard ‘graph’ definition
in mathematics. It only describes a supporting relationship
between nodes and risk edges which we use later to study
coupled movements of agents.

We start by considering the costs for decoupled move-
ments of the two agents. Recall that ψa,b denotes the
minimum cost for an agent to move from a to b on the
base graph G, the following statement holds.

Lemma 1. (Decoupled planning on base graph): On graph
G, consider the first agent moves from node i to w; the



Algorithm 1: JSG Construction.

1 Input G = (V, E), Zi,j .
2 Let J = (S,L)
3 for ∀i, j ∈ V do
4 Add sij to S
5 end
6 for any two distinct elements sij , swk ∈ S do
7 if i = w, j ̸= k and k ∈ Nj then
8 if i ∈ Zjk then
9 Add edge eij,wk to L. Define its cost as

Cij,wk = min{cj,k, (c̃j,k + c̃)}
10 else
11 Add edge eij,wk to L. Define its cost as

Cij,wk = cj,k
12 end
13 else if i ̸= w, j = k and w ∈ Ni then
14 if j ∈ Ziw then
15 Add edge eij,wk to L. Define its cost as

Cij,wk = min{ci,w, (c̃i,w + c̃)}
16 else
17 Add edge eij,wk to L. Define its cost as

Cij,wk = ci,w
18 end
19 else if k ∈ Nj and w ∈ Ni then
20 Add edge eij,wk to L. Define its cost as

Cij,wk = ci,w + cj,k
21 end
22 end
23 Return J = (S,L) and the associated costs Cij,wk.
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Fig. 4. Example for environment graph decomposition. In G, node 2 and
node 3 can support the edge between node 1 and node 4.

second agent moves from node j to k. Let Rij,wk be the
minimum cost for the two agents to complete the movement
without performing supporting behaviors. Then

Rij,wk = ψi,w + ψj,k.

Proof. The proof is trivial. Since the two agents do not per-
form supporting behaviors, their movements and associated
costs can be computed individually on the base graph G,
which by definition are ψi,w and ψj,k.

Now, to characterize the coupled movements of the two
agents, we construct a Critical Joint State Graph (CJSG),
T = (M,H), whereM and H are the node set and edge set
of T, respectively. For any hij,wk ∈ H, let Wij,wk denote the
cost associated with this edge. Details of CJSG construction
are summarized in Algorithm 2.

Algorithm 2: CJSG Construction

1 Input ER, s11, sgg , Zi,j , Rij,wk.
2 Let T = (M,H)
3 for each ei,j ∈ ER do
4 for each k ∈ Zi,j do
5 Add ski and skj to M.
6 Add sik and sjk to M.
7 end
8 Add s11 = (1, 1) and sgg = (g, g) to M (if they

are not already in M).
9 for any two distinct elements sij , swk ∈M do

10 if ej,k ∈ ER and i = w ∈ Zj,k then
11 Add edge hij,wk to H. Define its cost as

Wij,wk = min{(c̃j,k + c̃), Rij,wk}
12 else if ei,w ∈ ER and j = k ∈ Zi,w then
13 Add edge hij,wk to H. Define its cost as

Wij,wk = min{(c̃i,w + c̃), Rij,wk}.
14 else
15 Add edge hij,wk to H. Define the

associated cost as Wij,wk = Rij,wk.
16 end
17 end
18 end
19 Return T = (M,H) and the associated costs Wij,wk.

Remark 1. (Algorithm 2 explained): In CJSG, we consider
the node of the graph as any joint state that the two agents
(i) can initiate or complete supporting behaviors (c.f. steps 5
and 6), (ii) at their start or goal position of the planning task
(c.f. step 8). We let CJSG be fully connected. The edge costs
are associated with two agents moving over the base graph
(c.f. step 15) or a possible lower cost when they perform
a support behavior (c.f. steps 11 or 13, depending on who
supports who).

To provide a toy example, given the environment graph in
Fig. 4, we can construct the corresponding CJSG as shown
in Fig. 5. Using the support graph, the critical joint states are
the highlighted states in the middle part of Fig. 5 as well as
the initial and goal states. By computing edge costs according
to Lemma 1 and Algorithm 2, the CJSG is constructed as
shown on the right side of Fig. 5. Red edges are edges under
supporting behaviors such that c̃j,k and c̃i,w are available.
The blue edges are associated with Rij,wk where two agents
are decoupled and individually seek optimal paths on the
base graph.

After constructing CJSG, we present our search algorithm.
We define a path composition operation. Suppose u1 =
{ea,b, ec,d, · · · , ei,j}, u2 = {eg,h, er,t, · · · , ek,ℓ}. Then u1⊕
u2 = {eag,bh, ecr,dt, · · · , eil,jℓ}. When the two paths do not
have the same length, we extend the shorter one by repeating
its final node (so that in the graph representation, it stays at
that node). For example, if u1 is two elements shorter than
u2 then we extend it by u1 = {ea,b, ec,d, · · · , ei,j , ej,j , ej,j}.
The length of the composed path equals the length of the
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Fig. 5. Example for CJSG Construction. Based on support graph in (a), we can observe all critical joint states as depicted in (b). By fully connecting
these critical joint states with the initial states and goal states, we obtain the CJSG T as shown in (c).

u1 or u2, whichever is longer. Based on CJSG and path
composition, our search algorithm is presented in Algorithm
3, where PathPL can be any path planning algorithm, i.e.,
Dijkstra’s algorithm [31], that can obtain a shortest path
between two nodes.

Algorithm 3: Path Planning based on CJSG.

1 Input T = (M,H), G = (V, E).
2 û← PathPL(T, s11, sgg)
3 for each hij,wk in û do
4 if Wij,wk = Rij,wk then
5 Add [PathPL(G, i, w)⊕PathPL(G, i, k))] to u†

6 else if Wij,wk = c̃i,w + c̃ or Wij,wk = c̃j,k + c̃
then

7 Add [eij,wk] to u†

8 end
9 end

10 Return u†.

Remark 2. (Algorithm 3 explained): We first perform
path planning on T. Note that some edges hij,wk, when
Wij,wk = Rij,wk, are associated with paths of two agents
planned in G using Lemma 1. We use step 5 to reconstruct
these edges back to paths that the agents can traverse on the
environment. Furthermore, although step 5 recalls a path
planning process, this planning should have already been
computed by Lemma 1 when executing Algorithm 2.

Lemma 2. (Effectiveness of the critical-joint state graph):
The following statements hold.
(i) Any path u† reconstructed from a path û on CJSG is a
feasible path for the two agents on the environment graph,
thus, Q(u†) ≥ Q(u⋆).
(ii) The optimal path planned from the CJSG has the same
minimum cost as the optimal path planned directly from the
JSG, thus, Q(u†) ≤ Q(u⋆).

Proof. We prove the two statements in Lemma 2.
(i) Given any edge eij,wk in path u†, there are two situations.
One is Wij,wk = c̃i,w+c̃ or Wij,wk = c̃j,k+c̃, and another is
Wij,wk = Rij,wk. For the first case, the path in the environ-
ment graph represents one agent staying at the support node
where another agent traverses the corresponding supported
edge. It is a feasible path for two agents on the environment
graph by definition. For the second case, according to Lemma
1, two agents move independently and decoupled. As each
agent moves from one node to another on the environment
graph, the path obtained from the algorithm is feasible since
the planned base graph G is a subgraph of the environment
graph. Therefore, u† is always a feasible path for two agents
on the environment graph. Since u⋆ is the optimal path
for the environment graph planned from the JSG, we have
Q(u†) ≥ Q(u⋆).
(ii) We prove this by showing that for any optimal path
planned from the JSG, there is a path on CJSG with the
same cost. Considering the optimal path planned from JSG,
it consists of two agents’ movements with and (possibly)
without supporting behaviors. Let the u⋆ be divided into
different segments according to the above attribute. It is
obvious that all such segments are connected by a joint
state that initiates the supporting behavior and a state that
completes the supporting behavior, which are essentially
critical-joint states. Therefore, if we consider each segment
independently, the optimal path over this segment must
always be associated with the edges on the CJSG, either
in the form of decoupled paths on the base graph or by
performing a supporting behavior. Thus, for any optimal path
planned from the JSG, there is a path on CJSG with the same
cost. This together with the fact that u† is the optimal path on
CJSG leads to the conclusion Q(u†) ≤ Q(u⋆). We complete
the proof.

C. Comparison of Computational Complexity

We quantify the computational complexity of the search
algorithm applied to the joint state graph (JSG) and the crit-



ical joint state graph (CJSG), to demonstrate the advantage
of CJSG over the JSG.

For JSG J = (S,L) the graph construction complexity
is given by the addition of complexities of nodes and
edges. The complexity for the nodes is O(|S|) = O(|V|2).
Similarly, the complexity of edges is O(|L|) which equals
O(|V|4) in worst case senario when edges are fully con-
nected. Thus, the graph construction complexity of JSG
equals

OJconst = O(|V|2) +O(|V|4). (8)

Since the total number of nodes in JSG is O(|V|2), the search
complexity when edges are fully connected follows

OJplan = O(|V|4). (9)

Combining equations (8) and (9), complexity of JSG be-
comes

OJSG = O(|V|4). (10)

Similarly, the construction complexity of CJSG T =
(M,H) can be expressed as the addition of construction
complexities for nodes and edges. For nodes, the complexity
simply equals O(|M|). For edges, the complexity equals
O(|M|2) + O(|V|2 log(|V|)), where the first term is the
number of edges in T, which is fully connected. The second
term comes from Lemma 1, which, in the worst case, needs
to compute the shortest path between any pair of nodes in
G. The complexity of O(|V|2 log(|V|)) assumes the use of
Johnson’s algorithm [31]. Thus, the construction complexity
of CJSG equals

Oconst = O(|M|) +O(|M|2) +O(|V|2 log(|V|)). (11)

The search complexity of CJSG is determined by the number
of nodes in T, which follows

Oplan = O(|M|2) +O(|M|). (12)

where for the first term, we assume the use of Dijkstra’s
Algorithm [31] on T, to obtain û. The second term is asso-
ciated with reconstructing u† from û. Although Algorithm 3
embeds search functions in step 5, all the planning must have
been computed by Lemma 1 when executing Algorithm 2.
No replanning is needed. By combining (11) and (12), one
has

OCJSG = O(|M|2) +O(|V|2 log(|V|)). (13)

Remark 3. (Comparison of complexity): To compare the
complexities of OCJSG and OJSG, we only need to compare
O(|M|2) and O(|V|4). Note that in most scenarios, we
assume the number of support edges in G is small. As a
consequence, the number of critical-joint states is far less
than that of common joint states, i.e. |M| ≪ |V|2. Then
the proposed Algorithm 3 based on CJSG is significantly
more efficient than the traditional JSG method. The worst
boundary scenario happens when support edges widely exist
in G, in this case, one has |M| → |V|2, but |M| is still upper
bounded by |V|2 due to the fact that critical joint states are
subsets of joint states. Thus, OCJSG is always no worse than
OJSG.
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solution with respect to increasing number of nodes and risk edges ratio.

IV. NUMERICAL RESULTS

In this section, we evaluate JSG and CJSG on the basis
of graph construction and path planning under different con-
ditions.2 Our experimental design allows us to gain insights
through comparative analysis of JSG and CJSG in terms of
scalability and performance. The experiments are carried out
on a MacBook Pro with 2.8 GHz 8 core CPU and 8GB of
RAM.

For both graph construction and path planning analyses,
a random graph generator is used to generate environment
graphs with varying number of nodes and edges. We control
the ratio of risk edges to the total edges to be 1/5, 1/3, and
1/2. For different number of nodes and risk edges ratio in
an environment graph, we calculate graph construction time
and shortest path planning time for JSG and CJSG (Table I).
We repeat every experiment trial five times for statistical
significance.

A. Graph Construction Analysis

From Table I, we analyze the graph construction time for
JSG and CJSG under different conditions. Given a fixed risk
edges ratio, e.g., 1/3 of the total edges, the improvement in
graph construction time by CJSG compared to JSG maintains
as the number of nodes increases from 10 to 30. Similarly,
if we fix the number of nodes, e.g., 10, and increase the
risk edges ratio gradually from 1/5, then 1/3, and finally 1/2,
CJSG still takes less time compared to JSG. We can also
see such a pattern for node 20 and node 30. These results
provide empirical evidence that CJSG is more efficient in
constructing graphs. Note that when the risk edge ratio
reaches 1/2, nearly all joint states are critical joint states,
i.e., |M| → |V|2, and the graph construction times for the
two approaches are close to each other. This observation is
in line with Remark 3.

2https://github.com/RobotiXX/team-coordination

https://github.com/RobotiXX/team-coordination


TABLE I
COMPARISON OF JSG AND CJSG

JSG CJSG

Nodes Risk Edges Ratio Graph Construction(s) Shortest Path(s) Graph Construction(s) Shortest Path(s)

10 1/5 0.2119±0.0410 0.1440±0.0176 0.0146±0.0021 0.0198±0.0152
1/3 0.1760±0.0519 0.1510±0.0040 0.0895±0.0151 0.1258±0.0207
1/2 0.1906±0.0273 0.1567±0.0091 0.1810±0.0143 0.1469±0.0478

20 1/5 3.1662±0.0405 2.098±0.0445 0.6525±0.0931 0.4348±0.0651
1/3 3.3989±0.0603 2.1988±0.0660 1.7742±0.0497 0.7988±0.0094
1/2 3.8566±0.0906 2.3192±0.0265 3.6439±0.5942 1.2523±0.1181

30 1/5 20.9363±0.8312 11.6431±0.12776 6.1126±0.5537 2.7973±0.1778
1/3 22.4891±1.7074 12.3330±0.4995 13.8171±0.7259 4.5996±0.2204
1/2 25.9774±0.4323 13.4440±0.14222 26.8156±1.49423 6.9094±0.2677

B. Path Planning Analysis

From Table I, we also assess the path planning time for
JSG and CJSG with varying nodes and risk edges ratio.
Given a certain risk edges ratio, e.g., 1/3, we can see that
CJSG takes less time than JSG. This is true even if we
increase the nodes from 10 to 30. Similarly, if we fix the
node size, e.g., 20, and gradually increase the risk edges
ratio as 1/5, 1/3, and 1/2 of total edges, CJSG is still more
efficient than JSG. We can see the same pattern for nodes 10,
20 and 30. These results indicate that CJSG is more efficient
than JSG in terms of shortest path planning when the ratio
of risk edges to nodes increases.

Based on the experimental results shown in Table I, we
compute the total time taken by both JSG and CJSG to
find the final solution. The total time involves time taken
for graph construction and shortest path planning. In Fig. 6,
we show that as the number of nodes increases, the time to
generate total solution for JSG increases more significantly
than that of CJSG. Fig. 6 also illustrates that as the risk
edges ratio increases, the time to generate solution for JSG
increases more significantly compared to CJSG. Thus, CJSG
is more efficient than JSG for overall solution generation.

V. CONCLUSIONS

We presented a team coordination problem in a graph
environment, where high levels of coordination in the form
of “support” allows agents to reduce the cost of traversal on
some edges. As an alternative to solving this with a version
of MDP, we presented a method of planning in the joint
state space – the Joint State Graph (JSG). We showed that
a multi-agent path planning problem can be reduced to a
single-agent planning in JSG, since the actions taken by the
agents are built in to the edges of the JSG. We addressed
the issue of scalability in the graph size by presenting a
hierarchical decomposition method to perform path planning
in two levels. We provided complexity and statistical analysis
which show that the construction time for both CJSG and
JSG do not differ by much, but the CJSG is significantly
more efficient with regards to shortest path planning. Our
numerical results verify this.

For future work, there are many aspects of the problem we
proposed that we are intrigued to build upon. For instance,
we would like to integrate more sophisticated notions of
risk by using concepts from game theory and incorporating
stochasticity in the formulation, such as stochastic costs. We
are also interested in addressing the issue of scalability in
terms of number of agents.
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